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A Comparison of Numerical Techniques for
Modeling Electromagnetic Dispersive Media

Riaz Siushansian and Joe LoVetri

Abstract—A comparison of various time domain numerical
techniques to model material dispersion is presented. Methods
that model the material dispersion via a cenvolution integral as
well as those that use a differential equation representation are
considered. We have shown how the convolution integral arising
in the electromagnetic constitutive relation can be approximated
by the trapezoidal rule of numerical integration and imple-
mented using a newly derived one-time-step recursion relation.
The superiority of the new method, in terms of accuracy and
computer resources, over four previously published techniques
is demonstrated on the problem of a transient electromagnetic
plane wave propagating in a dispersive media. All of the methods
considered are easily incorporated into 3-D codes where the
requirement for efficiency is very important.

{. INTRODUCTION

T IS WELL known that in the time domain a dispersive

medium exhibits electromagnetic memory and can be mod-
eled via a convolution integral [1]. Recently, several numerical
schemes have been suggested to model material dispersion in
the time domain [2]-[7]. In this letter, the first approach we
consider is the method by Joseph er al. where the constitu-
tive relation relating the electric flux density D(z.t) to the
electric field E(x.t) is expressed via a second-order ordinary
differential equation [4]. The second technique we consider is
that of Luebbers and Hunsberger (and later on by Kelley and
Luebbers) in which the constitutive relation for a general Nth
order Lorentz dispersive medium is represented as a recursive
convolution integral [5], [6]. Finally. Sullivan formulates the
constitutive relation using the Z transform and obtains a
recursive relation between electric flux density and the electric
field [7]. Other schemes have been published, but these three
seem to be the most popular. We then summarize our new
higher-order convolution scheme, which was described in {8].
and give comparative results from applying all the schemes
on a sample problem.

II. NTH ORDER LORENTZ DISPERSION

A commonly used mathematical model to account for the
presence of dispersive material is to relate the electric flux
density to the electric field in the frequency domain by
a frequency-dependent constitutive relation. Specifically, an
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order-M Lorentz dispersion relation
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can be used to model a wide variety of material where,
in general, the M = 2N complex conjugate poles in the
summation model the natural resonances exhibited by the
medium. In (1} w, represents the pth resonant frequency, &, the
pth damping coefficient. ¢, is the high-frequency permittivity,
and €, the static permittivity. The time domain equivalent can
be represented as a convolution integral, as described in [1],
[51, or by taking the inverse Fourier transform of (1) as a
second-order ordinary differential equation, as was done for
M = 2 in [4].

IIl. REVIEW OF NUMERICAL
APPROXIMATIONS FOR DISPERSION

In all the numerical methods described, Maxwell’s curl
equations are solved by the standard FDTD method, but the
frequency-dependent nature of the constitutive relation must
now also be approximated. The procedure developed in [4]
uses the inverse Fourier transform of the complex permittivity
given by (1) to derive a second-order differential equations
between F(x.t) and H(x,t). A second-order finite difference
approximation is then derived for this equation and an update
equation for E™*! is obtained. This scheme requires the
storage of 2M — 1 real variables in addition to the field
values of the general FDTD method. The above scheme will
be referred to as JHT in the following discussion.

The procedure described in [5] approximates the convolu-
tion integral by a (Oth order) discrete summation and then
derives a recursive method for implementation. This method
will be referred to as the Constant Recursive Convolution
(CRC) method and is summarized in [3]. For an order-M
medium, M additional complex variables are required to be
stored over the standard FDTD method, i.e. for a general
dispersive material with P poles, a total of I’ real variables are
required in addition to the field values of the FDTD scheme.

Recently a new method was presented by Kelley and Lueb-
bers [6] in which the electric field in the convolution integral
is represented as a piecewise linear function of time. This
Piecewise Linear Recursive Convolution (PLRC) has shown
significant improvement over the CRC scheme. However, this
new method requires one extra level of back storage of the
electric field, £7~!, in addition to the CRC scheme.
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Finally, Sullivan demonstrated that a Z transform technique
can be employed to model dispersive media in conjunction
with the FDTD method [7]. The convolution integral of the
constitutive relation is represented by a recursive relation
obtained from its Z Transform and is incorporated into a new
update equation for the electric field. The FDTD calculations
of a dispersive medium with two poles demand three additional
real variables beyond the current field values of the general
FDTD method. We will denote this method as the ZT method.

IV. DISCRETE TRAPEZOIDAL CONVOLUTION METHOD

The main computational advantage of the convolution
method CRC over the ordinary differential equation method
(JHT) and the Z transform method (ZT) is that only one
level of back storage is required for the auxiliary variable
1,[1” used in the method. The reason the CRC scheme requires
only one time level of back storage is that the electric field
is assumed to be “constant” over each At interval in the
discretized convolution (this being the Oth-order integration
approximation). At first sight it seems that if we try to increase
the order of the integration to the first-order “trapezoidal rule”
instead of the “constant” approximation, we would require
two time levels of back storage (thus sacrificing memory
requirement for accuracy). This idea of using a piecewise
linear approximation to approximate the convolution integral
was recently used by Kelley and Luebbers in order to obtain
better accuracy [6]. Our trapezoidal rule is also a piecewise
linear approximation of the convolution integral, but we’ve
been able to implement it using a one time step recursive
scheme given by [8]
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and the discrete auxiliary function 1/31’} is found by the recursive
procedure
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P = EP(i)x0 + elmortifp)Atjn=1, 3)

Electric Field vs. Position
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Fig. 1. (a) Electric field and (b) difference between methods of a hyperbolic

secant envelope with carrier in a second-order dispersive medium after 5000
time steps using TRC, CRC, and PLRC.

In the remaining discussion we will refer to this new method
as the TRC method. This scheme is more accurate than the
CRC scheme when the slope of the electric field in one At
differs appreciably from a constant (i.e. for waveforms with
high frequency content).

V. EXPERIMENTAL RESULTS

We give results comparing all five methods on the linear
dispersive problem proposed in [4]. A sinusoidal carrier of
frequency f = 1.37 x 10'* Hz is modulated by a hyperbolic
secant envelope with time constant of 14.6 fs and propagated
in a second-order dispersive medium (where e; = 5.25,e,, =
2.25,w; = 4.0 x 10,6, = 1.0 x 10°, At = 2.25 x
107175, Az = 5 nm). Results after 5000 time steps using
all three recursive convolution schemes are shown in the first
plot of Fig. 1. The absolute difference between the TRC and
CRC methods as well as between the TRC and PLRC methods
are shown in the second plot of Fig. 1. It is evident that our
higher-order convolution method TRC is more accurate than
the original constant convolution method CRC and also our
carlier claim of interchangeability of PLRC and TRC schemes
is also supported by Fig. 1.

Next, we compared our TRC scheme with the other,
nonconvolution-based schemes, i.e. JHT and ZT. A small,
yet significant, difference was observed between the results
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Electric Field vs. Position
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Fig 2. (a) Electric field and (b) difference between methods of a hyperbolic

secant envelope with carrier in a second-order dispersive medium after 5000
time steps using TRC, JHT, and ZT.

obtained by the different schemes, as can be seen in Fig. 2.
The numerical dissipation produced by the schemes is the
least for the TRC method followed by PLRC, ZT, JHT, and
CRC.

In terms of computational etficiency, the CPU times per cell
per time step are shown in Table I. We see that using our new
TRC requires only an 8% increase in computation time over
the CRC and requires the same amount of storage space.

TABLE 1
CPU TIME FOR THE DIFFERENT SCHEMES
Scheme RC JHT TRC PLRC ZT
ps/cell/step 26 2.7 28 3.4 34
%0 1ncrease 0 4% 8% 31% 31%

VI. CONCLUSION

We have described a new higher-order convolution scheme,
TRC, which is based on the trapezoidal rule, and have derived
a one time step recursive scheme to compute it. This new
method has been compared to four previously published tech-
niques and the results show the TRC method to be superior in
terms of accuracy and required computer resources. This new
method is a general method capable of modeling order-AM
dispersive media whereas the JHT and ZT schemes have been
derived only for a second-order dispersive media. Furthermore.
the PLRC method requires the storage of one more real
variable per electric field component than the TRC scheme.
This will be very important in 3-D applications.
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